direct product, p-group, metabelian, nilpotent (class 2), monomial
Aliases: C2×C22.32C24, C42⋊11C23, C25.74C22, C22.39C25, C24.481C23, C23.272C24, C22.1022+ 1+4, C4⋊C4⋊5C23, (C2×D4)⋊7C23, (C2×Q8)⋊5C23, (C4×D4)⋊93C22, C22⋊C4⋊6C23, (C2×C4).42C24, C4⋊D4⋊64C22, (C2×C42)⋊46C22, (C23×C4)⋊32C22, (C22×C4)⋊15C23, C22⋊Q8⋊75C22, C22≀C2⋊28C22, C4.4D4⋊65C22, (C22×D4)⋊31C22, (C22×Q8)⋊26C22, C42⋊2C2⋊22C22, C2.7(C2×2+ 1+4), C23.259(C4○D4), C22.D4⋊33C22, (C2×C4×D4)⋊72C2, (C2×C4⋊D4)⋊56C2, (C2×C4⋊C4)⋊64C22, (C2×C22⋊Q8)⋊63C2, (C2×C22≀C2)⋊22C2, C22.8(C2×C4○D4), (C2×C4.4D4)⋊47C2, C2.16(C22×C4○D4), (C2×C42⋊2C2)⋊31C2, (C22×C22⋊C4)⋊31C2, (C2×C22⋊C4)⋊85C22, (C2×C22.D4)⋊50C2, SmallGroup(128,2182)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C2×C22.32C24
G = < a,b,c,d,e,f,g | a2=b2=c2=d2=f2=g2=1, e2=c, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ag=ga, bc=cb, ede-1=gdg=bd=db, fef=be=eb, bf=fb, bg=gb, fdf=cd=dc, ce=ec, cf=fc, cg=gc, eg=ge, fg=gf >
Subgroups: 1196 in 668 conjugacy classes, 396 normal (20 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, D4, Q8, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C24, C24, C24, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C4×D4, C22≀C2, C4⋊D4, C22⋊Q8, C22.D4, C4.4D4, C42⋊2C2, C23×C4, C23×C4, C22×D4, C22×D4, C22×Q8, C25, C22×C22⋊C4, C2×C4×D4, C2×C22≀C2, C2×C4⋊D4, C2×C4⋊D4, C2×C22⋊Q8, C2×C22.D4, C2×C4.4D4, C2×C42⋊2C2, C22.32C24, C2×C22.32C24
Quotients: C1, C2, C22, C23, C4○D4, C24, C2×C4○D4, 2+ 1+4, C25, C22.32C24, C22×C4○D4, C2×2+ 1+4, C2×C22.32C24
(1 9)(2 10)(3 11)(4 12)(5 24)(6 21)(7 22)(8 23)(13 18)(14 19)(15 20)(16 17)(25 32)(26 29)(27 30)(28 31)
(1 21)(2 22)(3 23)(4 24)(5 12)(6 9)(7 10)(8 11)(13 26)(14 27)(15 28)(16 25)(17 32)(18 29)(19 30)(20 31)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)
(1 31)(2 17)(3 29)(4 19)(5 27)(6 15)(7 25)(8 13)(9 28)(10 16)(11 26)(12 14)(18 23)(20 21)(22 32)(24 30)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(2 22)(4 24)(5 12)(7 10)(13 15)(14 25)(16 27)(17 30)(18 20)(19 32)(26 28)(29 31)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 28)(14 25)(15 26)(16 27)(17 30)(18 31)(19 32)(20 29)(21 23)(22 24)
G:=sub<Sym(32)| (1,9)(2,10)(3,11)(4,12)(5,24)(6,21)(7,22)(8,23)(13,18)(14,19)(15,20)(16,17)(25,32)(26,29)(27,30)(28,31), (1,21)(2,22)(3,23)(4,24)(5,12)(6,9)(7,10)(8,11)(13,26)(14,27)(15,28)(16,25)(17,32)(18,29)(19,30)(20,31), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,31)(2,17)(3,29)(4,19)(5,27)(6,15)(7,25)(8,13)(9,28)(10,16)(11,26)(12,14)(18,23)(20,21)(22,32)(24,30), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (2,22)(4,24)(5,12)(7,10)(13,15)(14,25)(16,27)(17,30)(18,20)(19,32)(26,28)(29,31), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,28)(14,25)(15,26)(16,27)(17,30)(18,31)(19,32)(20,29)(21,23)(22,24)>;
G:=Group( (1,9)(2,10)(3,11)(4,12)(5,24)(6,21)(7,22)(8,23)(13,18)(14,19)(15,20)(16,17)(25,32)(26,29)(27,30)(28,31), (1,21)(2,22)(3,23)(4,24)(5,12)(6,9)(7,10)(8,11)(13,26)(14,27)(15,28)(16,25)(17,32)(18,29)(19,30)(20,31), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,31)(2,17)(3,29)(4,19)(5,27)(6,15)(7,25)(8,13)(9,28)(10,16)(11,26)(12,14)(18,23)(20,21)(22,32)(24,30), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (2,22)(4,24)(5,12)(7,10)(13,15)(14,25)(16,27)(17,30)(18,20)(19,32)(26,28)(29,31), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,28)(14,25)(15,26)(16,27)(17,30)(18,31)(19,32)(20,29)(21,23)(22,24) );
G=PermutationGroup([[(1,9),(2,10),(3,11),(4,12),(5,24),(6,21),(7,22),(8,23),(13,18),(14,19),(15,20),(16,17),(25,32),(26,29),(27,30),(28,31)], [(1,21),(2,22),(3,23),(4,24),(5,12),(6,9),(7,10),(8,11),(13,26),(14,27),(15,28),(16,25),(17,32),(18,29),(19,30),(20,31)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32)], [(1,31),(2,17),(3,29),(4,19),(5,27),(6,15),(7,25),(8,13),(9,28),(10,16),(11,26),(12,14),(18,23),(20,21),(22,32),(24,30)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(2,22),(4,24),(5,12),(7,10),(13,15),(14,25),(16,27),(17,30),(18,20),(19,32),(26,28),(29,31)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,28),(14,25),(15,26),(16,27),(17,30),(18,31),(19,32),(20,29),(21,23),(22,24)]])
44 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 2L | ··· | 2S | 4A | ··· | 4H | 4I | ··· | 4X |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C4○D4 | 2+ 1+4 |
kernel | C2×C22.32C24 | C22×C22⋊C4 | C2×C4×D4 | C2×C22≀C2 | C2×C4⋊D4 | C2×C22⋊Q8 | C2×C22.D4 | C2×C4.4D4 | C2×C42⋊2C2 | C22.32C24 | C23 | C22 |
# reps | 1 | 1 | 2 | 2 | 3 | 1 | 2 | 2 | 2 | 16 | 8 | 4 |
Matrix representation of C2×C22.32C24 ►in GL8(𝔽5)
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 | 4 | 1 | 4 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 1 | 4 | 1 |
0 | 0 | 0 | 0 | 3 | 2 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 2 | 0 | 2 | 4 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 2 | 3 | 0 | 4 |
G:=sub<GL(8,GF(5))| [4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,4,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,4,0,1],[2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,1,4,3,0,0,0,0,1,0,1,2,0,0,0,0,0,0,4,0,0,0,0,0,0,0,1,1],[1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0,0,0,1,0,3,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4] >;
C2×C22.32C24 in GAP, Magma, Sage, TeX
C_2\times C_2^2._{32}C_2^4
% in TeX
G:=Group("C2xC2^2.32C2^4");
// GroupNames label
G:=SmallGroup(128,2182);
// by ID
G=gap.SmallGroup(128,2182);
# by ID
G:=PCGroup([7,-2,2,2,2,2,-2,2,477,456,1430,387,1123]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=f^2=g^2=1,e^2=c,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,e*d*e^-1=g*d*g=b*d=d*b,f*e*f=b*e=e*b,b*f=f*b,b*g=g*b,f*d*f=c*d=d*c,c*e=e*c,c*f=f*c,c*g=g*c,e*g=g*e,f*g=g*f>;
// generators/relations